如何利用Python爬虫,高效获取大规模数据,只需要这掌握这几点

x
用微信扫描二维码
分享至好友和朋友圈

  数据是创造和决策的原材料,高质量的数据都价值不菲。而利用爬虫,我们可以获取大量的价值数据,经分析可以发挥巨大的价值,比如:

  豆瓣、知乎:爬取优质答案,筛选出各话题下热门内容,探索用户的舆论导向。

  淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。

  搜房、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。

  拉勾、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。

  雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。

  公开的数据源往往量小且时效性差,爬虫则可以获取最为即时且规模庞大的互联网数据,这对于做市场分析、竞品调研、用户分析、商业决策显然是一个非常有效的方式。

  对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……

  但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。

  在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。

  

本文福利:私信回复【爬虫】可获取爬虫视频教程
1、学习 Python 包并实现基本的爬虫过程

  

  大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。

  Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。

  如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。

  2、掌握各种技巧,应对特殊网站的反爬措施

  

  当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。

  遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。

  往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。

  3、学习 scrapy,搭建工程化的爬虫

  

  掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。

  scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。

  学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。

  4、学习数据库基础,应对大规模数据存储

  

  爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。

  MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

  因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。

  5、分布式爬虫,实现大规模并发采集

  

  爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。

  分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。

  Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。

  所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。

  你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

跟贴 跟贴 0 参与 0
© 1997-2020 网易公司版权所有 About NetEase | 公司简介 | 联系方法 | 招聘信息 | 客户服务 | 隐私政策 | 广告服务 | 网站地图 | 意见反馈 | 不良信息举报

兴城科技

科技资讯

头像

兴城科技

科技资讯

1711

篇文章

550

人关注

列表加载中...
请登录后再关注
x

用户登录

网易通行证/邮箱用户可以直接登录:
忘记密码